Posts Tagged ‘low N’

The list of STMA-supported research publications from West Africa for the year 2019 is out

Posted on News, Press room, Published Journals, Research News, Seed System Publication, West Africa News, West Africa Publications, November 30, 2019

Melaku Gedil and Abebe Menkir. 2019. An Integrated Molecular and Conventional Breeding Scheme for Enhancing Genetic Gain in Maize in Africa. Published in Frontiers. Plant Sciences and accessible here

Adu, G. B., Badu-Apraku, B., Akromah, R., Garcia-Oliveira, A. L., Gedil, M., Awuku, F. J. 2019. Genetic diversity and population structure of early-maturing tropical maize inbred lines using SNP markers, published  in PloS ONE, volume 14, number 4 and accessible here  

Badu-Apraku, B., Talabi, A. O., Fakorede, M., Fasanmade, Y., Gedil, M., Magorokosho, C., Asiedu, R. 2019. Yield gains and associated changes in an early yellow bi-parental maize population following genomic selection for Striga resistance and drought tolerance, published in BMC Plant Biology, volume 19, number 129, and accessible here.

Bankole, F., Menkir, A., Olaoye , G.*, Olakojo, O.*, Gedil, M. 2019. Association studies between grain yield and agronomic traits of a MARS maize (Zea mays L.) population under drought and non-stress condition, published in Acta Agriculturae Slovenica, volume 114, and accessible here.

Kammo, E. Q., Suh, C., Mbong, G. A., Djomo, S. H., Chimi, N. L. L., Mbeungang, D. L., Mafouasson, H. A., Meseka, S. K. and Menkir, A. 2019. Biological versus chemical control of fall armyworm and Lepidoptera stem borers of maize (Zea mays), published in Agronomie Africaine, volume 31, number 2, and accessible here.

Kolawole, A. O., Menkir, A., Blay, E., Ofori, K. and Kling, J. G., 2019. Changes in heterosis of maize (Zea mays L.) varietal cross hybrids after four cycles of reciprocal recurrent selection, published in Cereal Research Communications, volume 47, number 1, and accessible here .

Sangare, A., Menkir, A., Ofori, K. and Gracen, V., 2019. Studies on estimation of heterosis for striga resistance in maize test crosses in Mali, published in Journal of Genetics, Genomics & Plant Breeding, volume 3, number 3, and accessible here

Akaogu, I. C., Badu-Apraku, B., Tongoona, P., Ceballos, H., Gracen, V. E., Offei, S. and Dzidzienyo, D. 2019. Inheritance of Striga hermonthica adaptive traits in an early-maturing white maize inbred line containing resistance genes from Zea diploperennis. published in Plant Breeding, and accessible here  

Annor, B., Badu-Apraku, B., Nyadanu, D., Akromah, R. and Fakorede, M. 2019. Testcross performance and combining ability of early maturing maize inbreds under multiple-stress environments, published in NATURE Scientific Reports, volume 9, and accessible here .

Nelimor, C., Badu-Apraku, B., Nguetta, S. P., Tetteh, A. Y. and Garcia-Oliveira, A. L. 2019. Phenotypic characterization of maize landraces from Sahel and Coastal west Africa reveals marked diversity and potential for genetic improvement, published in Journal of Crop Improvement, and accessible here .

Obeng-Bio, E., Badu-Apraku, B., Ifie, B. E., Danquah, A., Blay, E. and Annor, B. 2019. Genetic analysis of grain yield and agronomic traits of early provitamin A quality protein maize inbred lines in contrasting environments,  published in The Journal of Agricultural Science, and accessible here.

Nelimor, C., Badu-Apraku, B., Tetteh, A. Y.* and Nguetta, A. S. 2019. Assessment of genetic diversity for drought, heat and combined drought and heat stress tolerance in early maturing maize landraces, published in Plants, volume 8, and accessible here.

Badu-Apraku, B., Fakorede, M., Talabi, A. O., Oyekunle, M., Aderounmu, M., Lum, A. F., Ribeiro, P. F., Adu, G. B. and Toyinbo, J. O. 2019. Genetic studies of extra-early provitamin-A maize inbred lines and their hybrids in multiple environments, published in Crop Science, and accessible here.  

Badu-Apraku, B. and Akinwale, R. O. 2019. Biplot analysis of line X tester data of maize (Zea mays L.) inbred lines under stress and nonstress environments. Published in Cereal Research Communications, volume 47, number 3, and accessible here.

Oyinbo, O., Mbavai, J. J., Shitu, M. B., Kamara, A., Abdoulaye, T. and Ugbabe, O. O. 2019. Sustaining the beneficial effects of maize production in Nigeria: does adoption of short season maize varieties matter?  Published in Experimental Agriculture, and accessible here  

Kadjo, D., Ricker-Gilbert, J., Shively, G. and Abdoulaye, T. 2019. Food safety and adverse selection in rural maize markets. Published in Journal of Agricultural Economics, and accessible here .

Assfaw Wossen, T., Alene, A., Abdoulaye, T., Feleke, S. and Manyong, V. 2019. Agricultural technology adoption and household welfare: measurement and evidence, published in Food Policy, and accessible here  

Genetic analysis of grain yield and agronomic traits of early provitamin A quality protein maize inbred lines in contrasting environments

Posted on , November 30, 2019

Early-maturing provitamin A (PVA) quality protein maize (QPM) hybrids with combined drought and low soil nitrogen (low-N) tolerance are needed to address malnutrition and food security problems in sub-Saharan Africa (SSA). The current study’s objectives were to (i) examine combining ability of selected early maturing PVA-QPM inbreds for grain yield and other agronomic traits under drought, low-N, optimal environments and across environments, (ii) determine gene action conditioning PVA accumulation under optimal environments, (iii) classify inbreds into heterotic groups and identify testers and (iv) assess yield and stability of hybrids across environments. Ninety-six hybrids generated from 24 inbred lines using the North Carolina Design II together with four commercial hybrid controls were evaluated under drought, low-N and optimal environments in Nigeria in 2016 and 2017. Fifty-four selected hybrids were assayed for PVA carotenoid and tryptophan content. Additive genetic effects were greater than non-additive effects for grain yield and most agronomic traits under each and across environments. The gene action conditioning accumulation of PVA carotenoids under optimal growing conditions followed a pattern similar to that of grain yield and other yield-related traits. The inbred lines were categorized into four heterotic groups consistent with the pedigree records and with TZEIORQ 29 identified as the best male and female tester for heterotic group IV. No tester was found for the other groups. Hybrid TZEIORQ 24 × TZEIORQ 41 was the highest yielding and most stable across environments and should be further tested for consistent performance for commercialization in SSA.

Identification of donors for low-nitrogen stress with maize lethal necrosis (MLN) tolerance for maize breeding in sub- Saharan Africa

Posted on , November 17, 2019

After drought, a major challenge to smallholder farmers in sub-Saharan Africa is low-fertility soils with poor nitrogen (N)-supplying capacity. Many challenges in this region need to be overcome to create a viable fertilizer market.

An intermediate solution is the development of maize varieties with an enhanced ability to take up or utilize N in severely depleted soils, and to more efficiently use the small amounts of N that farmers can supply to their crops.

Over 400 elite inbred lines from seven maize breeding programs were screened to identify new sources of tolerance to low-N stress and maize lethal necrosis (MLN) for introgression into Africa-adapted elite germplasm. Lines with high levels of tolerance to both stresses were identified. Lines previously considered to be tolerant to low-N stress ranked in the bottom 10% under low-N confirming the need to replace these lines with new donors identified in this study.

The lines that performed best under low-N yielded about 0.5 Mg ha-1 (20%) more in testcross combinations than some widely used commercial parent lines such as CML442 and CML395. This is the first large scale study to identify maize inbred lines with tolerance to low-N stress and MLN in eastern and southern Africa.

© Copyright STMA 2017