Posts Tagged ‘East Africa’

List of STMA supported publications for sub-Saharan Africa for 2019

Posted on Eastern Africa News, Eastern Africa News, Eastern Africa Publications, News, News & Media, News release, Publications, Published Journals, Reports, Research News, Research Publication, Seed System News, Seed System Publication, Southern Africa News, Southern Africa Publications, Southern Africa Publications, West Africa News, West Africa Publications, May 14, 2020

Amondo, E., Simtowe, F., Rahut, D.B., Erenstein, O., 2019. Productivity and production risk effects of adopting drought-tolerant maize varieties in Zambia. International Journal of Climate Change Strategies and Management 11, 570-591. https://doi.org/10.1108/IJCCSM-03-2018-0024

Awata, L. A. O., Ifie, B. E., Tongoona, P., Danquah, E., Jumbo, M. B., Gowda, M., Marchelo-D’ragga, P. W., Sitonik, C., & Suresh, L. M. (2019). Maize lethal necrosis and the molecular basis of variability in concentrations of the causal viruses in co-infected maize plant. Journal of General and Molecular Virology, 9(1), 1-19.

Awondo, S.N., Kostandini, G., Setimela, P., Erenstein, O., in press. Multi-Site Bundling of Drought Tolerant Maize Varieties and Index Insurance. Journal of Agricultural Economics. https://doi.org/10.1111/1477-9552.12344

Buchaillot MB, Gracia-Romero A, Vergara-Diaz O, Zaman-Allah M, Tarekegne A, Cairns JE, Prasanna BM, Araus JL, Kefavuer SC. 2019. Evaluating maize genotype performance under low nitrogen conditions using RGB UAV phenotyping techniques. Sensors 19, 1815.

Chaikam V, Gowda M, Nair SK, Melchinger AE, Boddupalli PM. Genome-wide association study to identify genomic regions influencing spontaneous fertility in maize haploids. Euphytica. 2019 Aug 1;215(8):138.

Chaikam V, Molenaar W, Melchinger AE, Boddupalli PM. Doubled haploid technology for line development in maize: technical advances and prospects. Theoretical and Applied Genetics. 2019:1-7.

Chaikam, V., Gowda, M., Nair, S.K. et al. (2019) Genome-wide association study to identify genomic regions influencing spontaneous fertility in maize haploids Euphytica (2019) 215: 138. https://doi.org/10.1007/s10681-019-2459-

Katengeza, S.P., Holden, S.T., Lunduka, R.W., 2019. Adoption of Drought Tolerant Maize Varieties under Rainfall Stress in Malawi. Journal of Agricultural Economics 70, 198-214. https://onlinelibrary.wiley.com/doi/abs/10.1111/1477-9552.12283

Lunduka, R.W., Mateva, K.I., Magorokosho, C., Manjeru, P., 2019. Impact of adoption of drought-tolerant maize varieties on total maize production in south Eastern Zimbabwe. Climate and Development 11, 35-46. http://dx.doi.org/10.1080/17565529.2017.1372269

Nair S, Chaikam V, Gowda M et al. Genetic dissection of maternal influence on in vivo haploid induction in maize . The Crop Journal. 2019 (in press)

Simtowe, F., Amondo, E., Marenya, P., Rahut, D., Sonder, K., Erenstein, O., 2019. Impacts of drought-tolerant maize varieties on productivity, risk, and resource use: Evidence from Uganda. Land Use Policy 88, 104091. https://doi.org/10.1016/j.landusepol.2019.104091

Simtowe, F., Marenya, P., Amondo, E., Worku, M., Rahut, D.B., Erenstein, O., 2019. Heterogeneous seed access and information exposure: implications for the adoption of drought-tolerant maize varieties in Uganda. Agricultural and Food Economics 7, 15. https://doi.org/10.1186/s40100-019-0135-7

Sitonik, C., Suresh, L.M., Beyene, Y. et al. (2019) Theor Appl Genet (2019) 132: 2381. Genetic architecture of maize chlorotic mottle virus and maize lethal necrosis through GWAS, linkage analysis and genomic prediction in tropical maize germplasm https://doi.org/10.1007/s00122-019-03360-x

Tigist Mideksa Damesa, Jens Möhring, Manje Gowda, Yoseph Beyene, Kassa Semagn, Hans-Peter Piepho, 2019 Comparison of weighted and unweighted stage-wise analysis for genome-wide association studies and genomic selection – Crop Science

Wegary, D., Teklewold, A., Prasanna, B.M. et al. (2019) Molecular diversity and selective sweeps in maize inbred lines adapted to African highlands. Sci Rep 9, 13490 (2019) https://doi:10.1038/s41598-019-49861-z

Wender et al 2019, Performance and Yield Stability of Maize Hybrids in Stress-prone Environments in Eastern Africa,  The Crop Journal (Accepted)

Araus JL, Kefauver SC, Zaman-Allah M, Olsen, Cairns JE. 2018. Phenotyping: New Crop Breeding Frontier. In: R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, Springer Science+Business Media, LLC, part of Springer Nature 2018. https://doi.org/10.1007/978-1-4939-2493-6_1036-1

Das B, Atlin GN, Olsen M, Burgueño J, Tarekegne A, Babu R, Ndou E, Mashingaidze K, Moremoholo L, Ligeyo D, Matemba-Mutasa R, Zaman-Allah M, San Vicente, Prasanna BM, Cairns JE. 2018. Identification of low N tolerant donors for maize breeding in sub-Saharan Africa. Euphytica 215, 80.

Yuan Y, Cairns JE, Babu R, Gowda M, Makumbi D, Magorokosho C, San Vicente F, Olsen M, Prasanna BM, Lu Y, Zhang Y. 2018. Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and flowering time under drought and heat stress conditions in maize. Frontiers in Plant Science 9:1919.

Teklewolda H., Adam, R., Marenya, P. What explains the gender differences in the adoption of multiple maize varieties? Empirical evidence from Uganda and Tanzania. 2020. World Development Perspectives. https://doi.org/10.1016/j.wdp.2020.100206


Performance and yield stability of maize hybrids in stress-prone environments in eastern Africa

Posted on , November 17, 2019

Identification and deployment of high-yielding and stress-tolerant maize hybrids adapted
to stress-prone agro-ecologies is important for improving the food security and livelihoods
of smallholder farmers in eastern Africa.

The objectives of this study were to (i) assess the performance of maize hybrids under well-watered and drought stress conditions; (ii) evaluate grain yield stability of 65 intermediate-maturing and 55 early-maturing hybrids in 24 well-watered locations and seven drought stress locations; and (iii) identify representative and/or discriminative testing locations for increasing genetic gains for the target traits.

There were significant differences for grain yield among early- and intermediate maturing
hybrids tested under well-watered and drought stress environments. Among the early-maturing hybrids, the top 10 hybrids produced 46.8%–73.9% and 31.2%–42.1% higher mean grain yields than the best commercial check under drought and well-watered
conditions, respectively. Among the intermediate-maturing hybrids, the top 10 hybrids
produced 25.2%–47.7% and 8.5%–13.5% higher grain yield than commercial checks under
drought stress and well-watered conditions, respectively, suggesting improvement in the
levels of drought tolerance in both early- and intermediate-maturing hybrids.

GGE biplot analysis and a bi-segmented regression linear method identified specific early-maturing
and intermediate-maturing hybrids that performed well under both well-watered and
drought stress conditions. These hybrids could be recommended for commercial
production in eastern Africa.

Kakamega in Kenya was found to be the most representative and highly discriminating site among well-watered testing locations, while Kabuku in Tanzania was the least representative of test locations.

For testing under drought stress conditions, Kiboko in Kenya was identified as the most representative location. This information could be useful for allocating resources and streamlining CIMMYT maize hybrid testing in eastern Africa.

© Copyright STMA 2017