Latest STMA Bulletin is out

Posted on dtma, Eastern Africa News, Eastern Africa News, Eastern Africa Publications, general, Media&Stories, Milestone Reports, News release, Newsletter, Newsletters, Publications, Reports, Research News, Research Publication, Seed System News, Seed System Publication, Seed Systems, Southern Africa News, Southern Africa Publications, Southern Africa Publications, West Africa News, West Africa Publications, May 14, 2020

Read the latest news from the just concluded Stress Tolerant Maize for Africa (STMA) initiative. This issue highlights the impact the project has had on farmers in sub-Saharan Africa, how it has helped build resilience of Africa’s smallholder farmers and how the improved maize varieties will enable partners to reach farmers on time to plant and produce maize during the COVID-19 crisis in different countries in SSA. You will also get to read about farmers getting an opportunity to select the stress tolerant varieties they prefer and why varietal taste matters.

Download the bulletin here.

List of STMA supported publications for sub-Saharan Africa for 2019

Posted on Eastern Africa News, Eastern Africa News, Eastern Africa Publications, News, News & Media, News release, Publications, Published Journals, Reports, Research News, Research Publication, Seed System News, Seed System Publication, Southern Africa News, Southern Africa Publications, Southern Africa Publications, West Africa News, West Africa Publications, May 14, 2020

Amondo, E., Simtowe, F., Rahut, D.B., Erenstein, O., 2019. Productivity and production risk effects of adopting drought-tolerant maize varieties in Zambia. International Journal of Climate Change Strategies and Management 11, 570-591. https://doi.org/10.1108/IJCCSM-03-2018-0024

Awata, L. A. O., Ifie, B. E., Tongoona, P., Danquah, E., Jumbo, M. B., Gowda, M., Marchelo-D’ragga, P. W., Sitonik, C., & Suresh, L. M. (2019). Maize lethal necrosis and the molecular basis of variability in concentrations of the causal viruses in co-infected maize plant. Journal of General and Molecular Virology, 9(1), 1-19.

Awondo, S.N., Kostandini, G., Setimela, P., Erenstein, O., in press. Multi-Site Bundling of Drought Tolerant Maize Varieties and Index Insurance. Journal of Agricultural Economics. https://doi.org/10.1111/1477-9552.12344

Buchaillot MB, Gracia-Romero A, Vergara-Diaz O, Zaman-Allah M, Tarekegne A, Cairns JE, Prasanna BM, Araus JL, Kefavuer SC. 2019. Evaluating maize genotype performance under low nitrogen conditions using RGB UAV phenotyping techniques. Sensors 19, 1815.

Chaikam V, Gowda M, Nair SK, Melchinger AE, Boddupalli PM. Genome-wide association study to identify genomic regions influencing spontaneous fertility in maize haploids. Euphytica. 2019 Aug 1;215(8):138.

Chaikam V, Molenaar W, Melchinger AE, Boddupalli PM. Doubled haploid technology for line development in maize: technical advances and prospects. Theoretical and Applied Genetics. 2019:1-7.

Chaikam, V., Gowda, M., Nair, S.K. et al. (2019) Genome-wide association study to identify genomic regions influencing spontaneous fertility in maize haploids Euphytica (2019) 215: 138. https://doi.org/10.1007/s10681-019-2459-

Katengeza, S.P., Holden, S.T., Lunduka, R.W., 2019. Adoption of Drought Tolerant Maize Varieties under Rainfall Stress in Malawi. Journal of Agricultural Economics 70, 198-214. https://onlinelibrary.wiley.com/doi/abs/10.1111/1477-9552.12283

Lunduka, R.W., Mateva, K.I., Magorokosho, C., Manjeru, P., 2019. Impact of adoption of drought-tolerant maize varieties on total maize production in south Eastern Zimbabwe. Climate and Development 11, 35-46. http://dx.doi.org/10.1080/17565529.2017.1372269

Nair S, Chaikam V, Gowda M et al. Genetic dissection of maternal influence on in vivo haploid induction in maize . The Crop Journal. 2019 (in press)

Simtowe, F., Amondo, E., Marenya, P., Rahut, D., Sonder, K., Erenstein, O., 2019. Impacts of drought-tolerant maize varieties on productivity, risk, and resource use: Evidence from Uganda. Land Use Policy 88, 104091. https://doi.org/10.1016/j.landusepol.2019.104091

Simtowe, F., Marenya, P., Amondo, E., Worku, M., Rahut, D.B., Erenstein, O., 2019. Heterogeneous seed access and information exposure: implications for the adoption of drought-tolerant maize varieties in Uganda. Agricultural and Food Economics 7, 15. https://doi.org/10.1186/s40100-019-0135-7

Sitonik, C., Suresh, L.M., Beyene, Y. et al. (2019) Theor Appl Genet (2019) 132: 2381. Genetic architecture of maize chlorotic mottle virus and maize lethal necrosis through GWAS, linkage analysis and genomic prediction in tropical maize germplasm https://doi.org/10.1007/s00122-019-03360-x

Tigist Mideksa Damesa, Jens Möhring, Manje Gowda, Yoseph Beyene, Kassa Semagn, Hans-Peter Piepho, 2019 Comparison of weighted and unweighted stage-wise analysis for genome-wide association studies and genomic selection – Crop Science

Wegary, D., Teklewold, A., Prasanna, B.M. et al. (2019) Molecular diversity and selective sweeps in maize inbred lines adapted to African highlands. Sci Rep 9, 13490 (2019) https://doi:10.1038/s41598-019-49861-z

Wender et al 2019, Performance and Yield Stability of Maize Hybrids in Stress-prone Environments in Eastern Africa,  The Crop Journal (Accepted)

Araus JL, Kefauver SC, Zaman-Allah M, Olsen, Cairns JE. 2018. Phenotyping: New Crop Breeding Frontier. In: R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, Springer Science+Business Media, LLC, part of Springer Nature 2018. https://doi.org/10.1007/978-1-4939-2493-6_1036-1

Das B, Atlin GN, Olsen M, Burgueño J, Tarekegne A, Babu R, Ndou E, Mashingaidze K, Moremoholo L, Ligeyo D, Matemba-Mutasa R, Zaman-Allah M, San Vicente, Prasanna BM, Cairns JE. 2018. Identification of low N tolerant donors for maize breeding in sub-Saharan Africa. Euphytica 215, 80.

Yuan Y, Cairns JE, Babu R, Gowda M, Makumbi D, Magorokosho C, San Vicente F, Olsen M, Prasanna BM, Lu Y, Zhang Y. 2018. Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and flowering time under drought and heat stress conditions in maize. Frontiers in Plant Science 9:1919.

Teklewolda H., Adam, R., Marenya, P. What explains the gender differences in the adoption of multiple maize varieties? Empirical evidence from Uganda and Tanzania. 2020. World Development Perspectives. https://doi.org/10.1016/j.wdp.2020.100206


The list of STMA-supported research publications from Eastern and Southern African region for the year 2019 is out

Posted on Eastern Africa Publications, Published Journals, Research Publication, Seed System Publication, Southern Africa Publications, November 17, 2019

The list of research publications supported by the STMA project for the year 2019 has been compiled. Breakthrough research findings cover adoption studies, evaluation of new maize breeding methodologies, identification of genetic markers for accelerated maize improvement for various stresses including maize lethal necrosis resistance, drought and heat tolerance,…

Amondo et al, 2019. Productivity and production risk effects of adopting drought-tolerant maize varieties in Zambia published in the International Journal of Climate Change Strategies and Management is accessible here

Awata et al, 2019. Maize lethal necrosis and the molecular basis of variability in concentrations of the causal viruses in co-infected maize plant, published in the Journal of General and Molecular Virology is accessible here

Awondo, S.N. et al, 2019. Multi-Site Bundling of Drought Tolerant Maize Varieties and Index Insurance, published in the Journal of Agricultural Economics is accessible here.

Buchaillot MB et al, 2019. Evaluating maize genotype performance under low nitrogen conditions using RGB UAV phenotyping techniques, published in Sensors. Accessible here

Chaikam V et al, 2019. Doubled haploid technology for line development in maize: technical advances and prospects, published in Theoretical and Applied Genetics. Accessible here.

Chaikam, V. et al, 2019. Genome-wide association study to identify genomic regions influencing spontaneous fertility in maize haploids, published in Euphytica, accessible here.  

Katengeza, S.P. et al, 2019. Adoption of Drought Tolerant Maize Varieties under Rainfall Stress in Malawi, published in the Journal of Agricultural Economics. Accessible here.  

Lunduka, R.W. et al, 2019. Impact of adoption of drought-tolerant maize varieties on total maize production in south Eastern Zimbabwe, published in the Climate and Development. Accessible here.  

Nair S et al, 2019. Genetic dissection of maternal influence on in vivo haploid induction in maize, published in The Crop Journal (in press)

Simtowe, F. et al, 2019. Impacts of drought-tolerant maize varieties on productivity, risk, and resource use: Evidence from Uganda, published in the Land Use Policy Journal. Accessible here.  

Simtowe, F. et al, 2019. Heterogeneous seed access and information exposure: implications for the adoption of drought-tolerant maize varieties in Uganda, published in the Agricultural and Food Economics Journal. Accessible here.  

Sitonik, C. et al, 2019. Published in Theoretical and Applied Genetics. Genetic architecture of maize chlorotic mottle virus and maize lethal necrosis through GWAS, linkage analysis and genomic prediction in tropical maize germplasm. Accessible here.

Tigist Mideksa Damesa et al, 2019. Comparison of weighted and unweighted stage-wise analysis for genome-wide association studies and genomic selection, to be published in Crop Science. The PhD dissertation is accessible here.

Wegary, D. et al, 2019. Molecular diversity and selective sweeps in maize inbred lines adapted to African highlands, published in Nature Scientific Reports. Accessible here.  

Wender et al 2019. Performance and Yield Stability of Maize Hybrids in Stress-prone Environments in Eastern Africa,  published in the Crop Journal. Accessible here.  

Not reported but published in 2018

Araus JL et al, 2018. Phenotyping: New Crop Breeding Frontier. In: R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, Springer Science+Business Media, LLC, part of Springer Nature 2018.

Das B et al, 2018. Identification of low N tolerant donors for maize breeding in sub-Saharan Africa. Published in Euphytica and accessible here.

Yuan Y et al., 2018. Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and flowering time under drought and heat stress conditions in maize. Published in Frontiers in Plant Science and accessible here.

Setimela P, Zaman-Allah MA, Gasura E, Cairns JE, Thierfelder T, Prasanna BM. 2018. When the going gets tough: performance of stress tolerant maize under conservation agriculture during the 2015/16 El Nino season in southern Africa.

Posted on Published Journals, Research News, Research Publication, Southern Africa Publications, January 23, 2019

Agriculture, Ecosystems and Environment 268, 79-89. DOI: https://doi.org/10.1016/j.agee.2018.09.006

Abstract: The 2015/2016El Niño was the most severe on record in southern Africa and was associated with drought and heat stress. To help farmers to cope with such extreme production constraints the International Maize and Wheat Improvement Centre (CIMMYT), has been developing multiple stress tolerant maize varieties through a rapid-cycle breeding strategy. These CIMMYT stress tolerant maize hybrids were evaluated using two types of trials. The first one comprised a regional on-farm trial with forty maize varieties (20 early-intermediate and 20 intermediate-late varieties), planted across 30 locations in four countries in southern Africa. The second set comprised a multi-locational evaluation trial with six hybrids that were tested under conventional ridge tillage (CP) and conservation agriculture (CA) using a randomized block design with each farm as replicate in nine extension planning areas (EPA), across two years. CIMMYT stress tolerant varieties outperformed non stress tolerant varieties. CZH142020 (5.6 t ha −1) and CZH131008 (4.8 t ha −1) had significantly higher yield advantage over commercial control varieties (<4.5 t ha −1) in both early and late maturity groups. They also had larger grains and smaller ear uniformity index (EUI) (calculated as among plots ear size variance); compared non-stress tolerant varieties. In the CA/CP evaluation trial, varieties under CA yielded ≥0.7 t ha-1 more grain compared to those under CP. Therefore, combinations of climate-smart agriculture technologies are required to mitigate negative effects of extreme events like El Niño and increase resilience of low-input farming systems.

© Copyright STMA 2017